Operadores e Estruturas de Decisão

Vanessa Braganholo vanessa@ic.uff.br

Aula de hoje...

Operadores

- Aritméticos (usados em contas)
- Relacionais (usados em comparações numéricas)
- Lógicos (usados em comparações lógicas)
- De atribuição (armazenamento de valores em variáveis)

Estruturas de decisão

- ▶ *If...*
- If...else
- Switch...case

Operadores aritméticos

Operador	Exemplo	Prioridade
(expr)	$(1 + 2) * 3 \rightarrow 9$	1
var++	i++	2
var	j	2
++var	++i	3
var	j	3
+expr	+15	3
-expr	-(5+3) → -8	3
*	5 * 3→ 15	4
/	5 / 3 → 1	4
%	5 % 3 → 2	4
+	5 + 3 → 8	5
-	5 - 3 → 2	5

Operadores aritméticos

- Operadores com a mesma prioridade (precedência) são analisados da esquerda para a direita
- Aritmética de inteiros
 - Numerador e denominador inteiros
 - Resultado é somente a parte inteira da divisão
- Aritmética em modo misto
 - Numerador ou denominador real
 - Resultado fracionário

Exemplo

Considerando

```
int x = 511;

double y = 9.2 - (++x - 14.0 / 7.0) + 14.0 * 0.1;

• Resolução de y

y = 9.2 - (512 - 14.0 / 7.0) + 14.0 * 0.1

y = 9.2 - (512 - 2.0) + 14.0 * 0.1

y = 9.2 - 510.0 + 14.0 * 0.1

y = 9.2 - 510.0 + 1.4

y = -500.8 + 1.4

y = -499.4
```

Diferença entre ++x e x++

- ++x incrementa o valor de x e depois retorna x
- x++ retorna o valor de x e depois incrementa

Exemplo

Exemplo

```
int x = 5, y = 5;
System.out.println(++x); // imprime 6
System.out.println(x); // imprime 6
System.out.println(y++); // imprime 5
System.out.println(y); // imprime 6
```

Type Casting

- Em algumas situações o programador deseja transformar o tipo de uma expressão
 - Para isso, basta preceder a expressão por "(tipo)"
 - ► Type Casting tem prioridade superior a *, / e %
- Passar um real para inteiro

```
float a = 5.1f;
int x = (int) a;
x vale 5
```

Passar inteiro para real

```
int b = 5; int c = 2;
float y = (float)b/c;
y vale 2.5
```

Exemplo

Considerando

```
int x = (int) (3.3 / (5/2) - 5);
int y = (int) 3.3 / (5/2) - 5;
```

Resolução de x

$$x = (int) (3.3 / (2) - 5)$$

 $x = (int) (1.65 - 5)$
 $x = (int) (-3.35)$
 $x = -3$

Resolução de y

```
y = (int) 3.3 / (2) - 5

y = 3 / 2 - 5

y = 1 - 5

y = -4
```

Funções matemáticas

A classe Math

- Contém constantes (PI e número de Euler)
- Contém diversas funções matemáticas
- Não é necessário importar o seu pacote, java.lang, pois está sempre disponível

Constantes

- Math.Pl = 3.141592653589793
- Math.E = 2.718281828459045

Funções matemáticas

Método	Descrição	Exemplo
Math.abs(expr)	Valor absoluto	Math.abs(-5.3) → 5.3
Math.round(expr)	Arredonda um número	Math.round(5.3) \rightarrow 5
Math.ceil(expr)	Arredonda para cima	Math.ceil(5.3) → 6.0
Math.floor(expr)	Arredonda para baixo	Math.floor(5.3) \rightarrow 5.0
Math.max(expr1, expr2)	Maior de dois números	Math.max(5, 6) \rightarrow 6
Math.min(expr1, expr2)	Menor de dois números	Math.min(5, 6) \rightarrow 5
Math.sqrt(expr)	Raiz quadrada	Math.sqrt(4) → 2.0
Math.pow(expr1, expr2)	Potência	Math.pow(2, 3) \rightarrow 8.0
Math.log10(expr)	Logaritmo na base 10	Math.log10(100) → 2.0
Math.log(expr)	Logaritmo natural (base E)	Math.log(Math.E) → 1.0
Math.exp(expr)	Exponencial (eexpr)	Math.exp(0) → 1.0

Funções matemáticas

Função	Descrição	Exemplo
Math.sin(expr)	Seno	$Math.sin(0) \rightarrow 0.0$
Math.asin(expr)	Arco seno	Math.asin(1) → 1.5707963267948966
Math.cos(expr)	Cosseno	Math.cos(0) → 1.0
Math.acos(expr)	Arco cosseno	Math.acos(-1) → 3.141592653589793
Math.tan(expr)	Tangente	Math.tan(1) \rightarrow 1.5574077246549023
Math.atan(expr)	Arco tangente	Math.atan(1) \rightarrow 0.7853981633974483
Math.toDegrees(expr)	Converte radianos para graus	Math.toDegrees(Math.PI) → 180.0
Math.toRadians(expr)	Converte graus para radianos	Math.toRadians(180) → 3.141592653589793

- Funções trigonométricas trabalham com radiano
- Existem algumas outras funções menos usadas

Números aleatórios

- Algumas aplicações necessitam que o computador sorteie um número
 - Método Math.random()
 - Gera número pseudo aleatório entre 0 e 1
- A partir desse número, é possível gerar números em outros intervalos
 - inicio + (fim inicio) * Math.random()

Exemplo

Número entre 0 e 1

```
System.out.println(Math.random());
```

Número entre 5 e 6

```
System.out.println(5 + Math.random());
```

Número entre 0 e 10

```
System.out.println(Math.random() * 10);
```

Número entre 50 e 70

```
System.out.println(50 + Math.random() * 20);
```

Operadores relacionais

Operador	Exemplo	Prioridade
expr1 < expr2	5 < 3 → false	1
expr1 <= expr2	$5 \ll 3 \rightarrow false$	1
expr1 > expr2	5 > 3 → true	1
expr1 >= expr2	$5 >= 3 \rightarrow \text{true}$	1
expr1 == expr2	$5 == 3 \rightarrow false$	2
expr1 != expr2	5 != 3 → true	2

- Prioridade sempre inferior aos operadores aritméticos
- Sempre têm números como operandos
- Sempre têm resultado booleano

Operadores lógicos

Operador	Exemplo	Prioridade
! expr	!true → false	1
expr1 & expr2	true & false → false	2
expr1 ^ expr2	true ^ true → false	3
expr1 expr2	true true → true	4
expr1 && expr2	true && false → false	5
expr1 expr2	true false → true	6

- Prioridade sempre inferior aos operadores relacionais
- Exceção para "!", com prioridade superior a *, / e %
- Sempre têm booleanos como operandos
- Sempre têm resultado booleano

Tabela verdade

а	b	!a	a & b a && b	a ^ b	a b a b
true	true	false	true	false	true
true	false	false	false	true	true
false	true	true	false	true	true
false	false	true	false	false	false

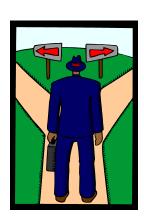
Ou e E otimizados

- & e &&, assim como | e || têm a mesma tabela verdade, mas
 - & e | sempre avaliam os dois operandos
 - && e || só avaliam o segundo operando se o primeiro não for conclusivo
- Diferença quando o segundo operando altera valores

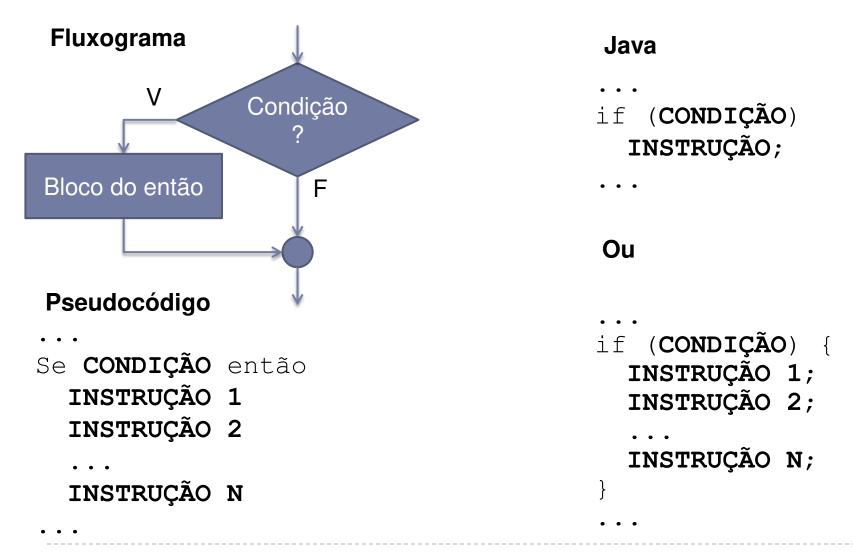
Operadores de atribuição

Operador	Exemplo
var = expr	x = 10 + 5
var += expr	$x += 5 \rightarrow x = x + 5$
var -= expr	$x -= 5 \rightarrow x = x - 5$
var *= expr	$x *= 5 \rightarrow x = x * 5$
var /= expr	$x = 5 \rightarrow x = x / 5$
var %= expr	$x \% = 5 \rightarrow x = x \% 5$
var &= expr	$x \&= true \rightarrow x = x \& true$
var ^= expr	$x ^= true \rightarrow x = x ^ true$
var = expr	$x \mid = true \rightarrow x = x \mid true$

Exemplo


Considerando

```
double x = 10.0;
double y = -2.0;
double z = 5.0;
boolean w = x * y < z / x | | x / y > z * x & z * y < x;
Resolução de w
10.0 * -2.0 < 5.0 / 10.0 | | 10.0 / -2.0 > 5.0 / 10.0 & 5.0 * -2.0
  < 10.0
-20.0 < 0.5 \mid \mid -5.0 > 0.5 \&\& -10.0 < 10.0
true | | false && true
true || false
true
```

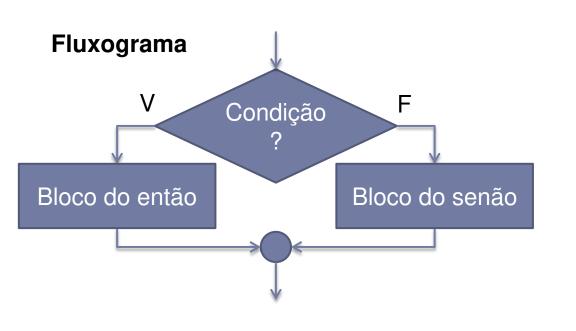

Decisão

Mecanismos de decisão:

- ▶ If ...
 - Executa algo somente quando uma condição é verdadeira
- If...else
 - Bifurca a execução do código em função de uma condição
- Switch...case
 - Executa múltiplos trechos de código em função do valor de uma expressão

Decisão do tipo if...

Decisão do tipo if...


- Executa o bloco de instruções somente se a condição for verdadeira
- A condição é uma expressão booleana que pode fazer uso de quaisquer operadores
- A condição deve sempre estar entre parênteses
- Pode omitir { e } caso execute somente uma instrução
 - As variáveis declaradas dentro de um bloco (entre { e }) só valem nesse bloco ou subblocos

Exemplo de if...

Programa para informar o valor absoluto de um número:

```
import java.util.Scanner;
public class Absoluto {
    public static void main(String[] args) {
        Scanner teclado = new Scanner (System.in);
        System.out.print("Entre com um número: ");
        double numero = teclado.nextDouble();
        if (numero < 0)
            numero = -numero;
        System.out.println("Valor absoluto: " +
 numero);
```

Decisão do tipo if... else

Pseudocódigo

. . .

Se CONDIÇÃO então

INSTRUÇÃO 1

INSTRUÇÃO 2

. . .

INSTRUÇÃO N

Senão

INSTRUÇÃO 1

INSTRUÇÃO 2

. . .

INSTRUÇÃO N

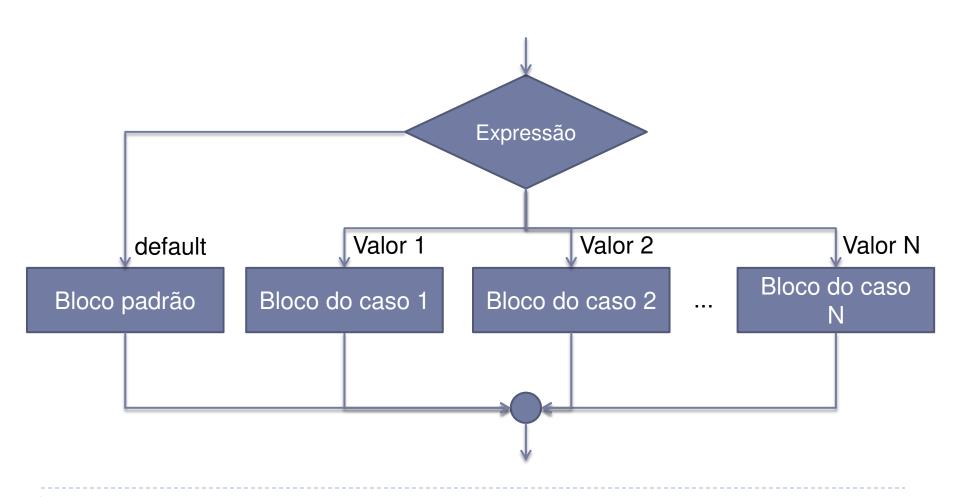
• • •

Decisão do tipo if... else

Java if (CONDIÇÃO) { INSTRUÇÃO 1; INSTRUÇÃO 2; if (CONDIÇÃO) INSTRUÇÃO; INSTRUÇÃO N; Ou } else { else INSTRUÇÃO 1; INSTRUÇÃO; INSTRUÇÃO 2; INSTRUÇÃO N;

Decisão do tipo if... else

- Executa um ou o outro bloco de instruções em função da condição ser verdadeira ou falsa
- Valem as mesmas regras para if...then
- Qualquer combinação de instrução individual ou em bloco é aceita no then e no else
- Podem ser aninhados com outras estruturas do tipo if...then...else


Exemplo de if... else

Programa para informar se um número é par ou impar:

```
import java.util.Scanner;
public class Paridade {
    public static void main(String[] args) {
        Scanner teclado = new Scanner (System.in);
        System.out.print("Entre com um número: ");
        int numero = teclado.nextInt();
        if (numero % 2 == 0)
            System.out.println("O número é par!");
        else
            System.out.println("O número é impar!");
```

```
import java.util.Scanner;
public class DiasMes {
                                                              Programa para
                                                                informar o
  public static void main(String[] args) {
                                                              número de dias
    Scanner teclado = new Scanner(System.in);
                                                                de um mês
    System.out.print("Entre com um mês (1 a 12): ");
    byte mes = teclado.nextByte();
    if
  ((mes==1) | (mes==3) | (mes==5) | (mes==7) | (mes==8) | (mes==10) | (mes==12)
      System.out.println("Esse mês tem 31 dias!");
    else if ((mes==4) \mid (mes==6) \mid (mes==9) \mid (mes==11))
      System.out.println("Esse mês tem 30 dias!");
    else {
      System.out.print("Entre com o ano (4 dígitos): ");
      short ano = teclado.nextShort();
      if ((ano%400==0) | | ((ano%4==0) && (ano%100!=0)))
        System.out.println("Esse mês tem 29 dias!");
      else
        System.out.println("Esse mês tem 28 dias!");
```

Decisão do tipo switch...case

Decisão do tipo switch...case

```
Java
switch (EXPRESSÃO) {
  case VALOR 1: INSTRUÇÃO 1;
                break;
  case VALOR 2: INSTRUÇÃO 1;
                break;
  case VALOR N: INSTRUÇÃO 1;
                break;
  default: INSTRUÇÃO 1;
```

Decisão do tipo switch...case

- Aceita expressões dos tipos byte, short, int, char e String
- É equivalente a if aninhado
 - Escolher o que tem melhor legibilidade
 - Switch...case é baseado em valores individuais
 - If...then...else pode ser baseado em intervalo de valores
- O uso de break é fundamental para a quebra do fluxo
 - A clausula *case* delimita somente o ponto de entrada
 - O programa executará todas as linhas seguintes até encontrar um break ou terminar o switch

Exemplo de switch...case

```
import java.util.Scanner;
public class DiasMes {
  public static void main(String[] args) {
    Scanner teclado = new Scanner(System.in);
    System.out.print("Entre com um mês (1 a 12): ");
    byte mes = teclado.nextByte();
    switch (mes) {
      case 1: case 3: case 5: case 7: case 8: case 10:
  case 12:
        System.out.println("Esse mês tem 31 dias!");
        break;
      case 4: case 6: case 9: case 11:
        System.out.println("Esse mês tem 30 dias!");
        break;
```


Exemplo de switch...case


```
case 2:
  System.out.print("Entre com o ano (4 dígitos): ");
  short ano = teclado.nextShort();
  if ((ano%400==0) | | ((ano%4==0) && (ano%100!=0)))
    System.out.println("Esse mês tem 29 dias!");
  else
    System.out.println("Esse mês tem 28 dias!");
 break;
default:
  System.out.println("Mês inválido!");
```

Escopo de variáveis

- Variável só é visível dentro do seu "escopo"
- Variável global
 - Variável declarada fora do "main"
 - Pode ser acessada e modificada de qualquer lugar
- Variável local
 - Variável declarada dentro de um bloco
 - Só é visível de dentro deste bloco

Faça um programa que calcule o IMC de uma pessoa (IMC = massa em kg / altura em metros2) e informe a sua classificação segundo a tabela a seguir, obtida na Wikipédia

IMC	Classificação
< 18,5	Abaixo do Peso
18,6 – 24,9	Saudável
25,0 – 29,9	Peso em excesso
30,0 – 34,9	Obesidade Grau I
35,0 – 39,9	Obesidade Grau II (severa)
≥ 40,0	Obesidade Grau III (mórbida)

- Faça um programa que leia três coordenadas num espaço 2D e indique se formam um triângulo, juntamente com o seu tipo (equilátero, isósceles e escaleno)
 - Equilátero: todos os lados iguais
 - Isósceles: dois lados iguais
 - Escaleno: todos os lados diferentes

- Faça um programa que leia um número inteiro de 5 dígitos e indique se ele é palíndromo
 - Um número palíndromo é aquele que se lido da esquerda para a direita ou da direita para a esquerda possui o mesmo valor (ex.: 15451)

 Faça um programa que leia um número inteiro entre 0 e 9999 e escreva o seu valor por extenso

Vocês já podem ler

 Capítulos 2 e 3 do livro Introdução à Ciência da Computação com Jogos. Ed. Campus.

Referências

Slides de Leonardo Murta

Operadores e Estruturas de Decisão

Vanessa Braganholo vanessa@ic.uff.br